
www.manaraa.com

Software Development as a Workflow Process�
Daniel K.C. Chany

INRIA - Rocquencourt
Domaine de Voluceau, B.P. 105

78153 Le Chesnay Cedex, France
Daniel.Chan@inria.fr

Karl R.P.H. Leung

Department of Computing
Hong Kong Polytechnic University

Hunghom, Hong Kong
cskleung@comp.polyu.edu.hk

Abstract

It is a general consensus that automated support for
software development is essential to harness the ever in-
creasing complexity of today’s software. Many software de-
velopment models, tools, and environments have been in-
troduced to address such a need; however, they are usu-
ally methodology-specific and impose a rather authoritar-
ian policy on the way software is developed. This paper
advocates the use of workflow systems to enact the pro-
cess of software development. Besides being more general
and flexible, the workflow paradigm supports useful fea-
tures lacking in other approaches. Also, it helps to reduce
development complexity by allowing both the software de-
velopment process and the software themselves to be cap-
tured using the very same paradigm. This paper introduces
a workflow system being developed to support the software
development process by presenting a solution to the ISPW-
6 Software Process Example expressed in its specification
language. This paper therefore serves two purposes: (1)
to introduce a new and more general approach to software
process enactment, and (2) to identify new requirements for
the workflow paradigm, such as event dependency, that are
applicable to many other advanced applications.�Copyright 1997 IEEE. Published in the Proceedings of Joint 1997 Asia
Pacific Software Engineering Conference (APSEC’97) and International
Computer Science Conference (ICSC’97), December 2-5, 1997in Hong
Kong SAR, China. Personal use of this material is permitted.However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution to
servers or lists, or to reuse any copyrighted component of this work in other
works, must be obtained from the IEEE. Contact: Manager, Copyrights
and Permissions / IEEE Service Center / 445 Hoes Lane / P.O. Box 1331 /
Piscataway, NJ 08855-1331, USA. Telephone: + Intl. 908-562-3966.ySupported by a Marie Curie Fellowship from the European Commis-
sion (ERBFMBICT960653).

1 Introduction

The workflow paradigm is advancing the scope of pro-
cess modelling by supporting complex control flows, rich
process structures, as well as the integration of new and
legacy systems that may be heterogeneous. It has enjoyed
some success in business process re-engineering [28] and
consequently is attracting a lot of attention from other appli-
cation domains such as scientific and engineering applica-
tions [25]. Like many of these application domains, the pro-
cess of software development [20] is such a complex task
that automated tools for the management and the execution
of the process are highly desirable. It is precisely because of
the fundamental ability of workflows to model, co-ordinate,
and monitor complex applications that attempts are being
made to extend the paradigm with new features to support
more advanced applications.

In the case of software development, existing tools of-
ten provide a sequence of phases to be followed and some
mechanism for refining a phase into more detailed phases.
However, derivations from the pre-defined phases and the
top-down refinement approach cannot be easily accommo-
dated without losing a significant amount of control. Such
static view of the software development process does not re-
flect the practice of system developers and hence is inappro-
priate for the execution of the process. Moreover, support
for process management hardly exists.

This paper advocates the use of the workflow paradigm
as a basis to support the execution and management of the
software development process. Generally speaking, more
flexibility is obtained as a result of the use of a general
purpose paradigm. In the case of the workflow paradigm,
it also provides openness to inter-operate with other sys-
tems, distributed execution environment, monitoring facil-
ity, and management of human resources. To demonstrate
the approach, this paper presents the ISPW-6 Software Pro-
cess Example [16] using a new workflow specification lan-
guage calledValmont. It is believed that the requirements

www.manaraa.com

extracted from supporting software processes are also ap-
plicable to many other application domains. Hence, over-
coming the challenges of providing workflow support to the
software process will shed light on the problems in other
application domains that are possibly less well understood.

The structure of the paper is as follows. Section 2 dis-
cusses related work on models and languages for processes
and workflows. Section 3 describes the ISPW-6 Software
Process Example that is used to demonstrateValmont. Sec-
tion 4 gives an outline ofValmontand the workflow model
Liaison on whichValmont is based. Section 5 gives the as-
sumptions made in the solution. Section 6 to 8 presents a
number ofValmontspecifications for the ISPW-6 Example.
Section 9 concludes.

2 Related Work

Traditional techniques such as data flow diagrams are
found to be unsuitable for modelling complex processes due
to their inability to capture the dynamic aspects of such pro-
cesses. Petri nets, which are often used to describe and anal-
yse concurrent systems [2], address the inadequacy con-
cerning modelling process dynamics. High-level Petri nets
[14] such as predicate/transition nets and colored Petri nets
raise the abstraction level closer to that of user applications
and hence become more useful for process modelling. An
attempt to model workflows using Petri nets is given in [10].
Statecharts [12], which are designed for modelling reactive
systems, allow concurrency and process abstraction to be
expressed. A far less formal approach to process modelling
based on the speech act theory has attracted a lot of atten-
tion [22]. A simplified form of it containing four phases:re-
quest, commitment, performance, andevaluationhas been
deployed as the modelling framework for Action Workflow
[18]. Nevertheless, some features of the workflow paradigm
such as the organisation model have not been captured by
the above-mentioned proposals.

Recently, the Workflow Management Coalition has is-
sued a proposal for a workflow specification language [26].
The proposal andValmont have close similarities but there
are also significant differences. The proposal sketches the
components of a specification language that is supposed to
be supported by all workflow systems so as to facilitate in-
teroperability of workflow systems and translation between
different representations of workflow models. It focuses
mainly on the attributes of entities which are only curso-
rily considered in this paper. However, no concrete syntax
is provided and a number of fundamental features are not
addressed at all.Valmont is more complete in both cover-
age and syntax. However, it would be more constructive to
look at the two languages as complementary to one another.

It is argued in [11] that C&Co, a C-based general pur-
pose programming language, is sufficient to serve as a

workflow specification language. Distributed concurrent
processes can be created and communication between such
processes relies on the use of write-once variables. Transac-
tion primitives supporting compensation and the two-phase
commit protocol are provided. The ability of C&Co to
express workflow computation and control is beyond dis-
pute but the level of abstraction provided is questionable.
Also no organisation model and user interaction are taken
into account. Perhaps, C&Co should be seen as an imple-
mentation language for the realisation of workflow systems.
Like C&Co, WADL [9] captures only the control flows and
transaction properties of tasks. Unlike C&Co, it provides
a higher-level of abstraction supporting sequential, parallel,
alternative, and non-deterministic flows. The last two are
not directly supported inValmontbut can be modelled eas-
ily. The specification language of the METEOR system [17]
(consisting of WFSL and TSL) comes much closer to be a
“real” workflow specification language with the support of
simple control flows, complex dependencies on data flows,
process abstraction, transaction support and exception han-
dling; however, several elements, such as the organisation
model, are still missing

The specification language of FlowMark from IBM [13]
bears a close resemblance toValmont but lacks a number
of advanced features that are supported byValmont. These
features include richer and more declarative activity as-
signment constraints, active rules providing a more general
framework for handling exceptions, and high-level transac-
tions [1] that are absent in FlowMark.

Among the fundamental elements of the workflow
paradigm, the organisation model is probably the least stud-
ied element. The only work that the authors are aware of
is reported in [3] which advocates an organisation model
containing three components: organisation structure, or-
ganisation expression, and activity assignment policy. All
three components show strong influences from the rela-
tional database model. In an organisation structure one “re-
lation” is used for every agent type and every relationship
between agent types. An organisation expression is essen-
tially a “view”. An activity assignment policy specifies the
domain - a conceptual geographical location represented by
a domain identifier - of a workflow activity as well as the or-
ganisation expression that returns a set of eligible agents for
the activity. UnlikeValmont, only activities can be given a
domain. Furthermore, the relational query language used in
organisation expressions may not be computationally pow-
erful enough, for instance it is not clear if recursive search
for superior is possible. Generally speaking and evidenced
by all examples shown in [3], agent relationships are used
only for traversing between agents and there is no need for
them to be “first-class” entities in the model.

Besides the above-mentioned models, several models
have been used to support process planning, re-planning,

www.manaraa.com

monitoring, and recording [15, 19]; to represent, analyse,
and compare development methodologies [23, 24]; as well
as to simulate and support process execution [8, 21]. A cur-
sory comparison of the workflow paradigm and the software
process can be found in [7]. The similarities between the
two are identified; however, their differences are not well
addressed. The conclusion is therefore rather simplistic and
underestimates the scale and implication of the differences.

3 The ISPW-6 Software Process Example

The ISPW-6 Software Process Example [16] is the first
benchmark application example to facilitate objective as-
sessment and comparison between software process mod-
els. Several extensions to the example have been introduced
since but this paper only discusses the core example in the
original description.

The core example concerns the execution and manage-
ment of a change of requirements for an existing software
component. The process is initiated in response to the modi-
fication of a requirement unit. It begins with a project leader
scheduling and assigning the various engineering tasks in
the process. These include modification of the correspond-
ing design unit, modification of the test plan, modification
of the unit test, and testing of the modified unit. During
the execution of these activities the project leader monitors
their progress. The process description specifies constraints
on the process including the ordering of some of the tasks,
the kinds of personnel responsible for each task, as well as
conditions for task initiation and termination. The tasks and
the (simplified) control flows between them are depicted in
Figure 1. “Monitor Progress” is a task that interacts with all
the other tasks in “Develop Change and Test Unit”.

Modify

Package
Unit Test

Schedule
 and
Assign
Task

Modify
Design

Modify
Code

Review
Design

Test
Unit

Modify
Test
Plans

Monitor
Progress

Develop Change and Test Unit

Figure 1. (Simplified) Control Flows in the
ISPW-6 Software Change Process

The specifications given in Section 6, 7, and 8 represent
only a partial solution to the ISPW-6 Example. The empha-
sis is on the delicate co-ordination that can be expressed in
Valmont. Moreover, some features are expressed only once
in the specifications as opposed to their multiple uses in the
ISPW-6 Example. Further discussion of the individual tasks
are given when their corresponding specifications are exam-
ined.

4 The Liaison Workflow Model

TheLiaison workflow model used in this paper is based
on the WIDE workflow model [4] and is an extension of
the reference workflow model proposed by the Workflow
Management Coalition [27]. Like the reference workflow
model, it captures the fundamental elements of the work-
flow paradigm: organisation model, information model,
process model, and their relationships. Unlike the refer-
ence workflow model, it supports a rich organisation model,
sophisticated activity assignment constraints, dynamic con-
trol flows including the use of active rules, complex process
structures, and workflow transactions.Liaison extends the
WIDE model with more elaborate process event dependen-
cies, dynamic process evolution support, and process inte-
gration support. The examples used in this paper are ex-
pressed usingValmont, which is a specification language
for Liaison. It is based on a specification language defined
earlier by the first author [6].

4.1 Organisation Model

The organisation model registers primarily the organisa-
tion structure and resources. It records information about
individual employees (staff), functional positions held by
staff (position), groups of staff (team) that are put together
to serve some transaction, as well as non-human resources
(tool) such as machines and software. A staff member can
hold several positions as well as participate in a number of
teams possibly in different capacities according to the posi-
tions held. Staff, positions, teams, and tools are collectively
referred to asagents. All agents are associated with ado-
mainwhich is usually used to model geographical sites or
functional units of an organisation.

The organisation model also captures relationships be-
tween staff, between positions, and between teams. These
relationships are useful for searching agent replacement.
Thedeputyrelationship allows one staff member to deputise
for another that is not available to carry out an activity. The
position hierarchycaptures theaccountabilityrelationship
between positions. When a staff member is not available, a
task can be performed instead by his or her senior to whom
the staff member is accountable for. Theteam hierarchy

www.manaraa.com

recording theinclusion relationship serves a similar pur-
pose. When a team member is not available, the team leader
can take over. However, if no one in the team is available,
the leader of theaffiliated team which includes the original
team can be brought in.

4.2 Information Model

The information model defines the data used in a work-
flow process, governs the operations that can be performed
on the data, as well as controls the scope and presentation
of the data. Data can have one of two possible scopes:
global and local. Global data are shared by all workflow
processes. They are persistent and are stored usually in ei-
ther databases or files. Local data are only accessible from
within one workflow process and are shared between ac-
tivities within the same process. They are managed by the
workflow system and are in many ways not unlike global
data.

Theentitydata type is introduced to capture external data
and their associated operations. Every entity may have a set
of associated operations that are often completely different
from any other entities. Nevertheless, for the purpose of
workflow applications, it is sufficient to treat all entities to
be of the same type at the expense of having to perform
some type checking dynamically at run-time.

The form data type is probably the most distinguishing
type in the information model. It resembles the record type
in programming languages except that it also contains pre-
sentation information. The presentation information is im-
portant due to the interactive nature of workflow systems - a
lot of information is presented and captured using forms dis-
played on user terminals. Presentation information include
headings, field labels, and formatting information. Each
field is typed and can be used to show or update data vari-
ables. Default field values can also be defined. A form type
can be derived from another form type possibly by remov-
ing fields. Moreover a derived form can relax or restrict
operations that can be performed on a field. This mech-
anism encourages and supports re-usability which reduces
the maintenance effort.

The information model supports the well-known base
types:integer, string, and so forth. It also supportslist as a
container type whose elements can be of any type including
list, entity, and form. Actually types are orthogonal and can
be combined freely.

4.3 Process Model

The use of activity abstraction in the process model al-
lows an application to be defined in an incremental fashion
and often the resultant design is more comprehensible. In
other words, an activity representing a unit of work at one

level can be refined into a network of activities in the next
level. Activities at the bottom level, so to speak, are the
building blocks of the process where actions are actually
carried out. The bottom-level activities are referred to as
base taskswhile other activities are calledtasks.

Every activity definition can contain the following com-
ponents: (1) apre-conditionthat has to be satisfied for the
activity to start, (2) actions performed by the activity, (3)
a post-conditionthat has to hold for the activity to termi-
nate, (4) arole constraintabout assigning the activity to an
agent, (5) aschedulefor the execution of the activity, and
(6) handlers for system-defined as well as user-definedex-
ceptions. The action part of an activity varies depending on
whether the activity is a task or a base task. For a task it cap-
tures the control flows between activities in the next level.
For a base task it captures some computation which may
be performed over the information model or some external
operation performed by the user. Consequently, role con-
straints may differ between tasks and base tasks. For a task
a role constraint may specify dependency between activity
assignments of lower-level activities. For a base task a role
constraint is always about the base task alone. Base tasks
have the option of specifying the forms that can be used for
interaction with the user.

A task can be highly dynamic as its execution can be in-
fluenced by exceptions raised by the user through the inter-
active tools provided (e.g. abort a task) or by the workflow
system itself (e.g. atemporal eventthat occurs regularly).
Therefore, an activity can be at differentstatesat different
times. Operations are executed only when an activity is in
the runningstate. Control flows between activities do not
have to be structured in a linear fashion. An activity can be
followed by (orfork) a number of activities while multiple
activities can precede (orjoin) a single activity.

4.4 TheValmont Workflow Language

4.4.1 Distribution

Valmontprovides a syntactic construct for each of the three
models described in the previous subsections. A model de-
fined using such a construct is referred to as aspecification
in this paper. In order to model distribution which can be
either a physical or logical notion, each specification can
be given adomainwhich qualifies all components defined
in the specification. Domains are hierarchical and are used
somewhat like Internet domain and host names with inclu-
sion semantics between them. To define a process that is to
be executed at different sites, the domain given to the spec-
ification can be partially parameterised.

www.manaraa.com

4.4.2 Reusability

Specifications can be reused or combined by importing one
specification to another. It should be noted that the do-
main of an imported specification remains unchanged. The
process model plays a central role in a workflow applica-
tion, it often imports specifications of the other models. On
the contrary, the other models only import specifications of
their own models.

4.4.3 Modularity

An organisation specification serves two purposes. First,
it can be used to define attributes for the various kinds of
agents and the relationships between them. Second, it al-
lows instantiation of the various kinds of agents.

An information specification consists of two kinds of
definitions. First, data definitions which are similar to type
definitions found in programming languages. In particular,
a piece of external data is defined as an entity - a very simple
form of abstract data type. Second, form definitions provide
a mechanism to group and share data. Presentation details
can also be captured in the form definitions.

A process specification can contain a number of task
specifications which can be further refined or decomposed
via other task specifications. Control flows are captured
using production-rule-like constructs. Data flows are ex-
pressed using parameter passing to forms which is simi-
lar to reference passing in procedure calls. Exceptions are
dealt with using event-condition-action rules. Activity as-
signment is specified using a novel syntax.

5 Assumptions of the Solution

The ISPW-6 Example includes both development and
management tasks. With the workflow paradigm, the man-
agement tasks are best modelled using the build-time sys-
tem and the monitoring facility of the run-time system. The
build-time system is usually used to define the various mod-
els before the workflow process is executed even though
some control can be defined dynamically or changed dur-
ing execution. The monitoring facility keeps track of the
execution history and runs as long as the process lasts.

It is therefore not surprising that “Schedule and Assign
Task” and “Monitor Progress” are not directly modelled in
the Valmont specifications. The “Assign Task” part is as-
sumed to have been carried out using the build-time system
to assign staff to the project team. Alternatively, assign-
ment can be made at run-time by the project leader as re-
quired. The “Schedule Task” part is kept as a development
task to demonstrate the dynamic scheduling capability. To
keep the specifications short, only one task (i.e. “Test Unit”)
is scheduled and the other tasks are left to run without any

scheduling constraints. “Monitor Progress” is not modelled
either since the monitoring facility can perform most of the
job automatically. The rest of the job can be incorporated
as exceptions in the development tasks.

The ISPW-6 Example process is supposed to be initiated
by the arrival of the new requirements document and the
verbal authorisation from the Configuration Control Board.
In the Valmont specifications, it is assumed that the initi-
ation of the workflow process (which includes registering
the responsible agent and executing agent) is an indication
of the receipt of the verbal authorisation. Also the new re-
quirements are assumed to have been stored and accessible
to the workflow system.

It should be noticed that both individual tasks and the
workflow process can be terminated at any point during the
execution by the user or the system itself. In other words,
cancellationis a pre-defined operation and requires no ex-
plicit modelling.

During the execution of the workflow process, a task that
is in the ready state will be put into the work-list of the re-
sponsible agent (i.e. after assignment resolution) together
with the scheduled start time and duration. An email mes-
sage is also sent to the agent about the arrival of the new
task. The agent can then choose when to perform the task.
If the task is not started after its scheduled start time, an
indication will be made in the work-list. Similarly, an indi-
cation will be shown when a task is overdue.

6 Organisation Specification

The organisation model can be used to capture an enter-
prise with multiple sites. Each site can be considered as a
domain. The hierarchy that often exists between sites can be
modelled as a hierarchy between domains. In the (partial)
organisation specification “SoftwareServices” given in line
6-30 of Figure 2, the domain qualifierLOCAL (line 6) is ac-
tually a domain parameter which is bound to the domain in
which the workflow process runs. Parameterised domains
allow reuse of organisation models. All components defined
in a specification are qualified by the domain of the speci-
fication. Domain qualification is however optional as is the
case for “SinoFrench” defined in line 1-5.Valmontallows
one specification to import other specifications. TheUSES

clause in line 7 of the “SoftwareServices” specification al-
lows all components defined in the “SinoFrench” specifi-
cation to be used in the “SoftwareServices” specification.
Often connections to the imported models are to be estab-
lished, one such connection between “SoftwareServices”
and “SinoFrench” is established in line 25 which will be
explained later.

Properties of individual employees are captured using
theSTAFF definition. Attributes appeared after the keyword
HAS are user-defined attributes which correspond to theex-

www.manaraa.com

1 ORGANISATION MODEL Sino French
...

2 TEAM ConfigurationControl Board
3 ...
4 END TEAM;
5 END MODEL

6 ORGANISATION MODEL SoftwareServicesOF LOCAL

7 USES ORGANISATION MODEL Sino French;
...

8 STAFF HAS

9 ARRAY OF STRING: skills;
10 ARRAY OF STRING: languages;
11 STRING: degree;
12 END STAFF;

13 POSITION DesignEngineerSUPERIOR ProjectLeader
14 ...
15 END POSITION;

16 POSITION Quality AssuranceEngineerSUPERIOR ProjectLeader
17 ...
18 END POSITION;

19 POSITION SoftwareEngineerSUPERIOR ProjectLeader
20 ...
21 END POSITION;

22 POSITION ProjectLeader
23 ...
24 END POSITION;

...
25 TEAM ProjectTeamAFFILIATION ConfigurationControl Board has
26 STAFF: designengineer;
27 STAFF: quality assuranceengineer;
28 ARRAY OF STAFF: softwareengineers;
29 END TEAM;
30 END MODEL

31 REGISTER TEAM ConfigurationControl BoardIN Sino French
32 (LEADER) (Frank);

33 REGISTER STAFF INSoftwareServicesOF France
34 (SELF, DEPUTY, languages, skills, degree)
35 [(Andy, [Billy], [“chinese”, “english”, “french”],

[“databases”, “software engineering”], “Ph.D.”), ...];

36 REGISTER POSITIONDesignEngineerIN SoftwareServicesOF France
37 (SELF, SUPERIOR)
38 [(Andy, Edward), (Billy, Edward), ...];

...
39 REGISTER TEAM ProjectTeamIN SoftwareServicesOF France
40 (LEADER,designengineer, qualityassuranceengineer, softwareengineers)
41 (Edward, Andy, Bob, [Chris, DavidAS SoftwareEngineer]);

Figure 2. A Partial Organisation Model

tended attribute listdefined in [26]. Attribute values can be
of any type, for instance “skills” is a list-valued attribute and
“degree” is a string-valued attribute. Line 31-41 of Figure 2
show how an organisation model can be populated with in-
stances using theREGISTERstatements. Line 33-35 register
an employee identified as “Andy” with four attribute values.
The first attribute “DEPUTY” is pre-defined and provides a
list of employees who can stand in for the employee being

registered.
Positions are defined using thePOSITION definition.

Apart from pre-defined attributes, user-defined attributes
can be introduced as in theSTAFF definition. The optional
accountability relationship can also be specified. In line 16-
18, the position “QualityAssuranceEngineer” is defined to
be accountable to “ProjectLeader” but no such relationship
is defined for “ProjectLeader” in line 22-24. Line 36-38
show the registration of two “DesignEngineer”’s identified
as “Andy” and “Billy”. They are both accountable to “Ed-
ward”. Each employee is assigned to at least one position
but can be more as in the case of “David” (see line 41).

Organisations are becoming more team-oriented rather
than function-oriented as the former helps to eliminate un-
necessary control resulting in better responsiveness and
flexibility. Teams can be defined using theTEAM defini-
tion, for example in line 2-4 and 25-29. “ProjectTeam”
has been given a user-defined list-valued attribute called
“softwareengineers” (line 28) and its value is given in
line 41. The pre-defined attribute “LEADER” is also reg-
istered in line 41. Since a team member can hold more
than one position, it is sometime necessary to specify the
capacity of a team member. In line 41, “David” serves in
the “ProjectTeam” as a “SoftwareEngineer” rather than
other capacities (e.g. “QualityAssuranceEngineer”) that
he may hold. Teams can form a team hierarchy using the
inclusion relationship. For instance, the “ProjectTeam” in
“France” is included in the “ConfigurationControl Board”
team. This is specified using theAFFILIATION clause in
line 25.

7 Information Specification

The information model is actually made up of two mod-
els - theform modeland thedata model. The form model
contains representation details of forms that can be used to
interact with the user. The data model can be used to define
global and local data. The next two subsections provide par-
tial specifications of the form and data models used in the
solution.

7.1 Form Specification

A form specification contains representation details con-
cerning the display of a form and the types of the data that
can appear in a form. The “DesignChangeForm” is de-
fined in line 2-10 in Figure 3 and the appearance of the
form is given in Figure 4. The heading statement (line 3)
prints a string on the screen whileNEW LINE and SPACE

correspond to starting a new line and producing some verti-
cal spacing. EachLABEL statement can generate a number
of buttons or boxes which may be labelled. For example,

www.manaraa.com

1 FORM MODEL SoftwareServicesOF France
2 FORM DesignChangeForm
3 HEADING “DESIGN CHANGE FORM”;
4 SPACE;
5 LABEL “Software Design”LINKS ENTITY : design;
6 NEW LINE; SPACE;
7 LABEL “New Requirements”LINKS TEXT: requirementschange;
8 NEW LINE; SPACE;
9 LABEL “Additional Recommendation”LINKS TEXT: fix designfeedback;
10 END FORM;

11 DERIVED FORM First DesignChangeFormFROM DesignChangeForm
12 WITHOUT fix designfeedback;
13 ONLY READ FOR requirementschange;
14 END FORM;

15 DERIVED FORM More DesignChangeForm FROM DesignChangeForm
16 ONLY READ FOR requirementschange, fixdesignfeedback;
17 END FORM;

...
18 END MODEL

Figure 3. A Partial Form Model

Figure 4. Design Change Form

line 9 generates a box next to the label “Additional Rec-
ommendation” to represent a link to a piece of data of type
TEXT. It should be noted that fields in a form are references
to local data and they are not value holders themselves. The
type information of the fields are included to facilitate type
checking and efficient formatting.

The “First DesignChangeForm” is derived from the
“Design ChangeForm” and differs from the latter in two

ways. First, the field “fixdesignfeedback” is removed (line
12). Second, the field “requirementschange” cannot be up-
dated (line 14). Similarly, “MoreDesignChangeForm” is
derived from the “DesignChangeForm”. It restricts access
to fields “requirementschange” and “fixdesignfeedback”
to read-only. Derived forms are used to control the scope
and access of local data by means of structural changes, ac-
cess constraints, and initial values for fields before the form
is displayed. Form derivation is simply a syntactic sugaring
for defining new forms and does not imply any relationship
between forms.

7.2 Data Specification

1 DATA MODEL SoftwareServicesOF France
2 ENTITY design “�ss/ispw6/design.txt”
3 HAS

4 edit “emacs $design”;
5 print “lpr $design”;
6 END ENTITY;

7 ENTITY sourcecode ...
8 ...
9 END ENTITY;

10 ENTITY objectcode ...
11 ...
12 END ENTITY;

13 ENTITY testunit package ...
14 ...
15 END ENTITY;

16 VARIABLE

17 STRING: fix design, testresults;
18 BOOLEAN: fix code, fixtest;
19 TIME: testunit start, testunit feeback;
20 TEXT: requirementschange, fixdesignfeedback, noof defects,
21 fix codefeedback, fixtest feedback, testplans;
22 END MODEL

Figure 5. A Partial Data Model

The data model given in Figure 5 contains two categories
of data. Line 2-6 captures an external document as an entity
and defines two associated operations: “edit” and “print”.
Operation associated with an entity are usually listed in a
pull-down menu in a form. It is also possible to copy an en-
tity from one field to another. Line 17-21 defines variables
of various types that can be used with forms as described in
the next section.

8 Process Specification

The process model primarily captures various relation-
ships between processes: the refinement relationship, con-
trol flows, and data flows.

www.manaraa.com

1 WORKFLOW MODEL ISPW-6OF France

2 USES ORGANISATION MODEL SoftwareServices;
3 FORM MODEL SoftwareServices;
4 DATA MODEL SoftwareServices;

5 CONTROL

6 START ScheduleTask;
7 ScheduleTaskENABLES PerformChange;
8 END PerformChange;

9 EXCEPTION

10 TestUnit Delayed
11 WHEN AT(test unit start)AND NOT STARTED(Test Unit)
12 DOES NOTIFY(Project Team.LEADER, “...”);

13 TestUnit Overdue
14 WHEN ELAPSED(Test Unit)> testunit length
15 DOES NOTIFY(Project Team.LEADER, “...”);

16 ReviewDesignCompleted
17 WHEN COMPLETED(Review Design)
18 DOES NOTIFY(Project Team.LEADER, “...” + noof defects);

19 TASK PerformChange

20 START Modify Design, ModifyTestPlans;

21 Modify DesignENABLES ReviewDesign;
22 ReviewDesignIF (fix designIN LIST[“minor changes”, “major changes”])
23 ENABLES Modify Design;
24 EACH(START EVENT(Modify Design),
25 TestUnit IF (fix code =TRUE))
26 ENABLES Modify Code;
27 Modify DesignENABLES END EVENT(Modify Code);

28 EACH((Modify TestPlans, ModifyDesign),
29 TestUnit IF (fix test =TRUE))
30 ENABLES Modify TestUnit Package;
31 Modify TestUnit Package, ModifyCodeENABLES TestUnit;

32 END TestUnit;

33 END TASK;

Figure 6. Tasks Modelling the ISPW-6 Soft-
ware Process Example

The workflow process definition begins with importing
an organisation model (line 2), a form model (line 3), and a
data model (line 4) relevant to the application.

The control part, line 6-8, specifies the top level activ-
ity abstraction of the workflow application. The workflow
is supposed to start from the “ScheduleTask” (line 6) and
finish with the “PerformChange” task (line 8). The transi-
tion from one task to another is captured using theENABLE

statement (line 7 shows its simplest form). Conditional tran-
sitions can be specified by providing a condition as in line
22.

Three exception handlers are defined in line 10-
18. “TestUnit Delayed” informs the project leader if
“Test Unit” is not started after the scheduled time.AT is
a time operator which compares the given time with the

current system time whileSTARTED is a pre-defined pred-
icate indicating if a task has begun. “TestUnit Overdue”
does the same when “TestUnit” is not completed by its
scheduled time. ELAPSED returns the time interval be-
tween the start of a task and the current system time. “Re-
view DesignCompleted” simply informs the project leader
of the completion of “ReviewDesign” together with infor-
mation about the defects.COMPLETEDchecks if the given
task is finished.

“Perform Change” is further refined between line 19-33
and is specified to have two starting tasks (line 20). Line 21-
27 concern the modification of design and code while line
28-31 deal with the testing of the modified code. A condi-
tional transition is used in line 22 to allow “Modify Design”
to be performed repeatedly until the design is considered
acceptable by “ReviewDesign”. “Modify Code” (line 26)
can be initiated in two ways: (1) after “ModifyDesign” is
started (line 24), (2) after “TestUnit” is finished and sug-
gests more code change (line 25). Line 27 asserts that
“Modify Code” cannot terminate before “ModifyDesign”
has done so. When a list of events appears on the left hand
side of ENABLES without qualification (line 31), they all
must hold before the task on the right hand side can start.
START EVENT (line 24) andEND EVENT (line 27) allow
delicate control to be specified. In this case, they are used to
specify that “ModifyDesign” and “ModifyCode” are not
ordered sequentially but instead can be overlapped.

In the case of a base task, instead of control statements,
computation and message display are specified. Forms are
displayed only by base tasks which have the duty of per-
forming computation that may require inputs from the user.
The forms to be displayed is specified in theVIEW clause
and their contents are filled using local variables (e.g. line
36). The mechanism is similar to pass by reference in pro-
cedure calls in programming languages.

Every activity can be given a pre-condition and a post-
condition that have to be satisfied for it to begin and end
successfully. The pre-condition of “ScheduleTask” given
in line 37-39 specifies that the two fields in the form must
be blank. The post-condition given in line 43 specifies that
all the fields must be filled. The keywordEVERY is a short-
hand for all the fields in a form. The role constraint given
in line 44-45 states that the task must be carried out by the
project leader. It is also possible to use more than one form
in a base task. Two forms are specified in “ModifyDesign”
(line 48-52). One form (line 49-50) is used when it is ini-
tiated for the first time and the other form (line 51-52) is
used when further change to the design is required. These
forms are used only if their associated conditions hold (line
50, 52). A base task can be assigned to multiple agents and
is demonstrated in line 60-62. Scheduling constraints can
be given like in line 77 which states that “TestUnit” must
start by 9 am on July 1 and should be completed in 7 days.

www.manaraa.com

34 BASE TASK ScheduleTask
35 VIEW

36 ScheduleForm(testunit start, testunit length);
37 PRE CONDITION

38 ScheduleForm.startIS NULL;
39 ScheduleForm.lengthIS NULL;
40 MESSAGE

41 “Please fill in the start time and duration.”;
42 POST CONDITION

43 EVERY ScheduleForm IS NOT NULL;
44 ROLE

45 STAFF ProjectTeam.LEADER;
46 END TASK;

47 BASE TASK Modify Design
48 VIEW

49 First DesignChangeForm(requirementschange, design)
50 IF fix designIS NULL;
51 More DesignChangeForm(requirementschange, design,

fix designfeedback)
52 IF fix designIN LIST[“minor changes”, “major changes”];

...
53 ROLE

54 STAFF ProjectTeam.designengineer;
55 END TASK;

56 BASE TASK ReviewDesign
57 VIEW

58 ReviewForm(requirementschange, design,
fix designfeedback, fixdesign, noof defects);

...
59 ROLE

60 STAFF ProjectTeam.designengineer;
61 STAFF ProjectTeam.qualityassuranceengineer;
62 STAFF 2 ProjectTeam.softwareengineer;
63 END TASK;

64 BASE TASK Modify Code
65 VIEW

66 First CodeChangeForm(design, sourcecode)
67 IF fix codeIS NULL;
68 More CodeChangeForm(design, sourcecode, fixcodefeedback)
69 IF fix code =TRUE;

...
70 END TASK;

71 BASE TASK Modify TestPlans
...

72 END TASK;

73 BASE TASK Modify Unit TestPackage
...

74 END TASK;

75 BASE TASK TestUnit
...

76 SCHEDULE

77 FOR AT(97/7/1,9:00:00)LASTING INTERVAL (0/0/7);
78 END TASK;

79 END MODEL

Figure 7. Base Tasks Modelling the ISPW-6
Software Process Example

9 Concluding Remarks

This paper demonstrated the use of a general purpose
paradigm and hence a more flexible way to support the soft-

ware development process. It was shown that the workflow
paradigm offered a more comprehensive modelling scope
which allows organisation structures, human resources, user
interfaces, integration of external services, as well as fine
dependency control to be captured. The use of a workflow
specification language in this paper is merely for the pur-
pose of illustration and the system is assumed to be operated
primarily graphically. Nevertheless, having a workflow lan-
guage was found to be very helpful in studying the individ-
ual features as well as their interaction. The requirements
that have been identified so far from the software process [5]
also emerge as necessary in other application domains. It is
believed that using a well studied application domain such
as the software process would help significantly in directing
the development of advanced workflow systems which will
benefit a whole spectrum of application domains.

References

[1] G. Alonso, D. Agrawal, A. El Abbadi, M. Kamath, R. Gün-
thör, and C. Mohan. Advanced Transaction Models in Work-
flow Contexts. InProceedings of the International Confer-
ence on Data Engineering, pages 574–581. IEEE Computer
Society Press, 1996.

[2] E. Best and C. Fernandez.Nonsequential Processes - A Petri
Net View, volume 13 ofEATCA Monographs on Theoretical
Computer Science. Springer-Verlag, 1988.

[3] C. Bussler. Policy Resolution in Workflow Management
Systems.Digital Technical Journal, 6(4):26–49, 1994.

[4] F. Casati, P. Grefen, B. Pernici, G. Pozzi, and G. Sánchez.
WIDE Workflow Model and Architecture. Technical Report
96-19, Centre for Telematics and Information Technology
(CTIT), University of Twente, Netherlands, 1996.

[5] D. Chan and K. Leung. A Workflow Vista of the Software
Process. InProceedings of the International Workshop on
Database and Expert Systems Applications, pages 62–67.
IEEE Computer Society Press, 1997.

[6] D. Chan, J. Vonk, G. Sánchez, P. Grefen, and P. Apers. A
Conceptual Workflow Specification Language. Technical
Report 96-48, Centre for Telematics and Information Tech-
nology (CTIT), University of Twente, Netherlands, 1996.

[7] G. Chroust. Interpretable Process Model for Software De-
velopment and Workflow. InProceedings of the Euro-
pean Workshop on Software Process Technology, volume
913 ofLecture Notes in Computer Science, pages 144–153.
Springer-Verlag, 1995.

[8] W. Deiters and V. Gruhn. Managing Software Processes in
the Environment Melmac. InProceedings of the 4th ACM
SIGSOFT Symposium on Practical Software Development
Environments, pages 193–205. ACM Press, 1990.

[9] J. Eder and W. Liebhart. The Workflow Activity Model
WAMO. In Proceedings of the 3rd International Confer-
ence on Cooperative Information Systems, pages 87–98. US
West Advanced Technologies, 1995.

[10] C. Ellis and G. Nutt. Modelling and Enactment of Work-
flow Systems. InApplication and Theory of Petri Nets, vol-

www.manaraa.com

ume 691 ofLecture Notes in Computer Science, pages 1–16.
Springer-Verlag, 1993.

[11] A. Forst, E. Kühn, and O. Bukhres. General Purpose
Workflow Languages.Distributed and Parallel Databases,
3(2):187–218, 1995.

[12] D. Harel. Statecharts: A Visual Formalism For Complex
Systems.Science of Computer Programming, 8(3):231–274,
1987.

[13] IBM Corporation, U.S.A.Modelling Workflow, 1996. SH19-
8241-01.

[14] K. Jensen and G. Rozenberg, editors.High-Level Petri Nets:
Theory and Applications. Springer-Verlag, 1991.

[15] M. Kellner. Software Process Modelling Support for Man-
agement Planning and Control. InProceedings of the Inter-
national Conference on the Software Process, pages 8–28.
IEEE Press, 1991.

[16] M. Kellner, P. Feiler, A. Finkelstein, T. Katayama, L. Oster-
weil, M. Penedo, and H. Rombach. ISPW-6 Software Pro-
cess Example. InProceedings of the International Confer-
ence on the Software Process, pages 176–186. IEEE Press,
1991.

[17] N. Krishnakumar and A. Sheth. Managing Heterogeneous
Multi-System Tasks to Support Enterprise-Wide Operations.
Distributed and Parallel Databases, 3(2):155–186, 1995.

[18] R. Medina-Mora, T. Winograd, R. Flores, and F. Flores.
The Action Workflow Approach to Workflow Management
Technology. InProceedings of the ACM Conference on
Computer Supported Cooperative Work, pages 281–288.
ACM Press, 1992.

[19] P. Mi and W. Scacchi. Modeling Articulation Work in Soft-
ware Engineering Processes. InProceedings of the Interna-
tional Conference on the Software Process, pages 188–201.
IEEE Press, 1991.

[20] L. Osterweil. Software Processes are Software Too. InPro-
ceedings of the International Conference on Software Engi-
neering, pages 2–13. ACM Press, 1987.

[21] M. Saeki, T. Kenoko, and M. Sakamoto. A Method for Soft-
ware Process Modeling and Description using LOTOS. In
Proceedings of the International Conference on the Software
Process, pages 90–104. IEEE Press, 1991.

[22] T. Schäl. Workflow Management Systems for Process Or-
ganisations, volume 1096 ofLecture Notes in Computer Sci-
ence. Springer-Verlag, 1996.

[23] X. Song and L. Osterweil. Comparing Design Methodolo-
gies through Process Modeling. InProceedings of the Inter-
national Conference on the Software Process, pages 29–44.
IEEE Press, 1991.

[24] M. Suzuki and T. Katayama. Meta-operations in the Process
Model HFSP for the Dynamics and Flexibility of Software
Processes. InProceedings of the International Conference
on the Software Process, pages 202–217. IEEE Press, 1991.

[25] R. Wagner, editor.Proceedings of the International Work-
shop on Database and Expert Systems Applications (Work-
flow Management in Scientific and Engineering Applica-
tions). IEEE Computer Society Press, 1997.

[26] Interface 1: Process Definition Interchange. Technical Re-
port TC-1016, Workflow Management Coalition, May 1996.

[27] Terminology & Glossary. Technical Report TC-1011, Work-
flow Management Coalition, June 1996.

[28] T. White and L. Fischer.New Tools for New Times: the
Workflow Paradigm. Future Strategies Inc., 1995.

